International Conference on Ultrafast Optical Science

September 30-October 04, 2019

Lebedev Physical Institute of RAS

Femtosecond laser 3D micromachining: from research prototype to industrial tool

Ya Cheng

Shanghai Institute of Optics and Fine Mechanics East China Normal University

 \times XXL - THE EXTREME OPTOELECTROMECHANIX LAB

Why femtosecond laser for micromachining?

I. Ultrashort pulse width: suppress thermal effects

Femtosecond Nanosecond

Figure 1.4 Holes drilled in 100 μm-thick steel foils by ablation using laser pulses with the following parameters: (a) pulse width: 200 fs, pulse energy: 120 μJ, fluence: 0.5 J/cm², wavelength: 780 nm; and (b) pulse width: 3.3 ns, pulse energy: 1 mJ, fluence: 4.2 J/cm², wavelength: 780 nm. The scale bars represent 30 μm. Courtesy of A. Ostendorf.

B. N. Chichkov, et al., Appl. Phys. A 63, 109 (1996)

II. Ultrahigh intensity: 3D internal processing

III. Ultrahigh nonlinearity: break diffraction limit

697(2001)

Resolution: ~ 100 nm

PNAS 101, 5856(2004)

Resolution: ~ 40 nm

Chip 13, 1626 (2013)

Resolution: ~ 40 nm

Nonlinear threshold effect provides a resolution far beyond that allowed by the diffraction limit

To bring femtosecond laser 3D micromachining to the commercial market, we need:

1. High fabrication efficiency;

2. Large workpiece size;

3. Broad materials coverage !

Today's topics

I. 3D printing

II. Microfluidics & chemistry chips

III. Photonic chips

I. 3D printing

Fabricate 3D glass structures: selective laser-induced etching

Challenges: low axial resolutions with low NAs and aberration

Large size Low resolution Small size High resolution

Solution: picosecond laser modification

Y. Cheng, et al, Patent: 201910056960.2 P. Wang et al, Micromachines 2019, 10, 565

Uniform cross-section of lines at different depths

Evidence showing a resolution of ~15 µm in Z direction

One more thing: chemical etching

We can produce isotropic, aberration-free modification in glass. The chemical wet etching is dependent on the orientation of polarization of the writing beam. How can we remove such dependence to achieve homogeneous writing of complex 3D structures ?

Short pulses: nanogratings

Longer pulses: stress induced cracks always along scan direction

Y. Cheng, et al, Patent: US16377138

Polarization sensitivity vs pulse duration

Fig. 2. Etching rates of laser modified lines in fused silica versus pulse durations at different polarization conditions and laser powers: (a) 100 mW; (b) 200 mW; (c) 300 mW; (d) 400 mW.

Applied Surface Science 485 (2019) 188–193

Selective etching independent of polarization

Applied Surface Science 485 (2019) 188–193

Maintain the high resolution at various depths.

Achieve a polarization insensitive internal modification.

Structures: Einstein of a height of 2 cm

2 cm

Scale bar, 5 mm.

Structures: Confucius of a height of 3.8 cm

Micromachines **2019**, *10*, 565

Scale bar, 5 mm.

Structures: micromachines with movable parts

Air turbine

Scale bar, 5 mm.

Adjustable wrench

II. Microfluidics & chemistry chips

3D fluidic chip for higher mixing efficiency

Y. Liao, et al., Lab. Chip 12, 746 (2012)

Demonstration of high mixing efficiency

Compact 3D mixer: smaller but more powerful

The 3D micromixer is efficient but it is also of a large footprint size for its "loose" 3D geometry.

Accommodating a 3D micro-mixer in a planar channel to have a more compact geometry & higher mixing efficiency.

Compact 3D mixer: the new design

Compact 3D mixer: fabricated device

Compact 3D mixer: the functionality

3ml/min

10ml/min

Total length: ~1 cm

Mixing in the compact 3D micromixer

Biological microfluidic circuits within human body

A printed hand with embedded blood vessels

mm

III. Photonic chips

From Electronic ICs to Photonic ICs

First Generation Electronic Computer

Very-large scale integrated circuits

High-performance Electronic Information Products

Optical information processing platform

Crystalline PIC: Opportunities and Challenges

	Nonlinear optical coefficients	Electro-optic coefficients
Lithium niobite (LN)	41.7 pm/V	30.9 pm/V
Quartz	0.3 pm/V	0.93 pm/V

Opportunities:

- Broad transmission window
- High nonlinear optical / electro-optic /thermal coefficients....

Challenges:

- Hard to be patterned by optical lithography
- High chemical stability

First high-Q lithium niobate disk

High-Q microresonators on lithium niobate (LN)

High-Q microresonators on lithium niobate (LN)

Cylindrical post (a) after femtosecond laser ablation and (b) after the FIB milling

(c) SEM image (top view) of the microresonator, inset: side view.

J. Lin, et al, arXiv:1405.6473 (2014); Sci. Rep. 5, 8072 (2015)

High Q microdisks with tunable wedge angle

J. Zhang, et al, Nanomaterials 2019, 9, 1218; doi:10.3390/nano9091218 Q ~ 4.7 × 10⁷

Nonlinear optics with the high-Q microdisks

PHYSICAL REVIEW LETTERS 122, 173903 (2019)

Broadband Quasi-Phase-Matched Harmonic Generation in an On-Chip Monocrystalline Lithium Niobate Microdisk Resonator

Jintian Lin,^{1,*} Ni Yao,^{2,*} Zhenzhong Hao,³ Jianhao Zhang,^{1,5} Wenbo Mao,³ Min Wang,⁴ Wei Chu,¹ Rongbo Wu,^{1,5} Zhiwei Fang,² Lingling Qiao,¹ Wei Fang,^{2,*} Fang Bo,^{3,*} and Ya Cheng^{1,4,5,6,3}
¹State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
²State Key Laboratory of Modern Optical Instrumentation. College of Optical Science and Engineering, Zhejiang University, Hangshou 310027, China
³The MOE Key Laboratory of Weak Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics. Nankai University, Tanjin 300457, China
⁴State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
⁶Collaborative Inovation Center of Extreme Optics, Shansi University, Taiyuan, Shanxi 030006, China

(Received 16 October 2018; published 3 May 2019)

We reveal a unique broadband natural quasi-phase-matching (QPM) mechanism underlying an observation of highly efficient second- and third-order harmonic generation at multiple wavelengths in an x-cut lithium niobate (LN) microdisk resonator. For light waves in the transverse-electric mode propagating along the circumference of the microdisk, the effective nonlinear optical coefficients naturally oscillate periodically to change both the sign and magnitude, facilitating QPM without the necessity of domain engineering in the micrometer-scale LN disk. The second-harmonic ad acsaded third-harmonic waves are simultaneously generated with normalized conversion efficiencies as high as 9.9%/mW and $1.05\%/mW^2$, respectively, thanks to the utilization of the highest nonlinear coefficient d_{33} of LN. The high efficiency achieved with the microdisk of a diameter of $\sim 30 \ \mu m$ is beneficial for realizing high-density integration of nonlinear photonic devices such as wavelength convertors and entangled photon sources.

PHYSICAL REVIEW LETTERS 122, 253902 (2019)

High-Q Exterior Whispering-Gallery Modes in a Double-Layer Crystalline Microdisk Resonator

 Yuanlin Zheng, ^{1,2,*} Zhiwei Fang, ^{3,4,5,*} Shijie Liu, ^{1,2} Ya Cheng, ^{3,4,5,6,‡} and Xianfeng Chen^{1,2,†}
¹State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
²Key Laboratory for Laser Plasma (Ministry of Education), Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
³State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
⁴XXL-The Extreme Optoelectromechanics Laboratory, School of Physics and Materials Science, East China Normal University, Shanghai 200241, China
⁵State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
⁶Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China

(Received 11 April 2019; published 27 June 2019)

Exterior whispering-gallery modes (WGMs), whose mode energy is mainly confined outside the microcavity, can achieve large mode overlapping with the ambient environment, as well as a strong electric field and gradient force at the surface. Here, we demonstrate highly localized WGMs in the nanoair gap of a double-layer crystalline microdisk. The geometry is based on a horizontal slot-waveguide structure of two vertically stacked crystalline microdisks made of lithium niobate thin films. The slot WGM possesses a high quality factor in excess of 10⁴ without metallic loss. The absorption and scattering loss is reduced by use of the crystalline nanofilm at sub-nm rms surface roughness. The demonstrated configuration can be highly favored in various applications including optical sensing, nonlinear optics, and optomechanics.

DOI: 10.1103/PhysRevLett.122.253902

0031-9007/19/122(25)/253902(5)

On-chip electro-optical tunable microresonator

- Optical quality: Q~10⁷
- Mechanical quality: Q_m~2.86×10⁸
- Electro-mechanical tuning efficiency : -134 kHz/100V
 - Z. Fang, et al., Opt. Lett. 44, 1214 (2019)

- Optical quality Q~7.1×10⁶
- The Raman-assisted FWM microcomb: spectral bandwidth of ~200 nm
- Eletrcal tuning efficiency ~38 pm/100V
 - Z. Fang, et al., arXiv preprint arXiv:1909.00399 (2019)

From laboratory prototype to industrial tool:

Femtosecond laser assisted chemomechanical polish lithography

Fabrication of low-loss LN waveguides

Ya Cheng et al. Patent No: 201810407783.3; US patent No: 16404735 R. B. Wu, et al, Nanomaterials 8, 910 (2018)

Fabrication of low-loss LN waveguides

Keypoint: extremely smooth surface with a surface roughness as low as 0.452 nm.

Propagation loss measurement

$$\alpha = \frac{2\pi n_{\rm eff}}{Q\lambda} = 0.027 \ \rm dB/cm$$

Loss measurement via measurement of Q factor of a waveguide ring resonator: loss 0.027 dB/cm.

Beamsplitters built by LNOI waveguides

M. Wang, R. Wu, J. Lin, et al. Quantum Engineering e9, 1 (2019).

Beamsplitters built by LNOI waveguides

M. Wang, R. Wu, J. Lin, et al. Quantum Engineering e9, 1 (2019).

A multifunctional photonic chip on LNOI

R. Wu, J. Lin, M. Wang, et. al. Opt. Lett. 44, 4698 (2019)

(a)

A perfect beamsplitter of tunable ratio

R. Wu, J. Lin, M. Wang, et. al. Opt. Lett. 44, 4698 (2019)

Demonstration of 1 x 6 optical switch

R. Wu, J. Lin, M. Wang, et. al. Opt. Lett. 44, 4698 (2019)

A balanced 3 x 3 interferometer

R. Wu, J. Lin, M. Wang, et. al. Opt. Lett. 44, 4698 (2019)

Conclusions

For the first times, we demonstrate:

- 1. Aberration free focusing deeply into glass;
- 2. Centimeter-scale microfluidic systems fabricated with high-throughput internal processing;
- 3. Lithium niobate waveguides of a propagation loss ~0.02 dB/cm !

Together, revolutionary products can be created in a profitable fashion!

You can buy the fluidic and photonic devices

Please visit: xxl.ecnu.edu.cn